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Abstract. Consider a continuous distribution on [0,») with c¢df F, survival
function F = 1-F and cumulative hazard function H = -LnF. For F NBUE it
is shown that the correlation coefficient between X » F and H(X) is bounded
below by o/u, the coefficient of variation of F, while for F NWUE the
correlation coefficient is bounded below by u/d. Several applications of this
inequality and its generalizations are discussed, including Monte-Carlo simula-
tion of the renewal function, exponential approximation of DMRL distributions,

moment inequalities for record values and a variance inequality for random

event epochs in a homogeneous Poisson process.
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1. Introduction and Summary.

-’~
‘:.f?-j‘

Consider a continuous distribution on [0,~), with cdf F, survival

" -~
W

function F = 1-F and cumulative hazard function H = -LnF. If X A~ F then L5yt

H(X) is exponentially distributed with mean 1, The random variable H(X)

W,

measures lifetime by total hazard overcome until death, while X measures ’l:.
o

I‘g

lifetime in ordinary time units. Since H is an increasing function we know ,:!
i‘g

LE3

that H(X) and X are positively correlated. The question of how positively corre-

By,

lated arose naturally in Brown, Solomon and Stephens (1981) and Brown (1987) in f’:
t’@:

different contexts. In the former paper the asymptotic relative savings in :'.:
. .|’|'

risk between two Monte-Carlo estimators of the renewal function was given by i
, L

the square of the correlation coefficient between X and HQP{. In Brown z::
U

3

(1987), a quantity closely related to the correlation coefficient was needed ':g'
03

to bound the distance between a DMRL (decreasing mean residual life) distribu- .
5,

tion and its stationary renewal distribution. Y
(‘.

In this paper we show that for X NBUE (new better than used in expectation): $

It

_ o *;'

(1.1) p(X,H(X)) > — i
—u “

. ¥

‘i.e

o

while for X NWUE (new worse than used in expectation): ‘

K

gt

y e

(L.2) PXH(K)) > . P
W
L

The 1lc se. bound on the correlation coefficient also aids in bounding the 5.5

expected waiting time, E(Sz—Sl), between the first and second record values
corresponding to an i.i.d. sequence {Xi,i > 1} with Xi ~ F, Using (1.1) ﬁ

.

::t:

\\¢

0.::
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and (1.2) we show that for F NBUE: ”

i “,
b 2 "_
- s

(1.3) g < E(S5,8)) <o ¥

H :,1

and for F NWUE: fy

i

(1.4) u < E(5,-5)) < o. i

X

l.I

The quantity E(Sz—Sl) represents the expected time to failure after the :‘

e

first minimal repair, and is of interest in the study of maintenance policies. ¢
9

In section 3.4 inequalities are derived for the moments of higher record ::

a';.

values. For example it is shown that if F is IFRA, and Sr is the rth ,:f

I

record value then: K

N

' g

- - )

: (1.5) 1;+r 1 < ESl:: (k+lr< 1)uk :‘:l
r-1 !

0

where uj = rxdar(x). ‘;‘

.l

In section 3.5 we show that if {Ti,i > 1} are the arrival epochs for a :::

]

homogeneous Poisson process with parameter A, and N is a stopping time, then U

: Var TN > A-z. We further show that among all distributions with failure rate :‘;
y I
; )
uniformly bounded above by A, the exponential distribution with parameter A :::

o)

W

has the minimum variance for the kth record value, for k > 1, Y

T

e

e
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2.

A Correlation Inequality.

Consider a non-negative random variable X with continuous cdf F.

* - -
Denote by X a random variable with cdf G(x) = 1 fg F(t)dt, the stationary

renewal distribution corresponding tc F. Let T denote a random variable Ny
4
with distribution dFT(t) = tu—ldF(t). T 1is distributed as the length of h
)

the interval covering an arbitrary fixed point in a stationary renewal process

with interarrival time distribution F (Feller (1971) p. 371). Since the

backward recurrence time for a stationary renewal process is distributed as

G, we see that:

*
(2.1) T X[X>X

*
where X 1is independent of X.

Next, consider the record value process corresponding to F. We take an

% ‘
- \

\ i.i.d. sequence {Xi’ i> 1} with Xi ~ F and define S1 Xl, \
N2 = {min i:Xi>Xl}, S2 = XNZ, Nk = min{:[:)(i>)(Nk l}, Sk = XNk, k=3,4,.0. . .r

= 0

? The sequence {Si’ i > 1} generates a non-homogeneous Poisson process with

EN(t) = -LnF(t) = H(t) (Shorrock (1972)). Note that:

,
oo ne,

(2.2) s, ~ X[X > X'

o ————

PP LSS

where X' 1is independent of X with the same distribution.

We now derive a useful result, Two proofs are given, as each is

o et
>3

instructive.

Lemma 2,1, If F is NBUE (NWUE) then 82 is stochastically larger (smaller)

3 than T,

- e,
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O O Xt O T S TR TS U S T S TN L e T NS R TR [0 i e L P A I s RS S A NI DM WYY



St |"3 *
Proof 1. F NBUE is equivalent to X > x*. Now Z(x) = X|X > x 1is stochas-

tically increasing in x (Pr(Z(x) >t) ='f(th)/?(x), where aVvb = max(a,b), !
and is thus increasing in x) therefore S, = Z(X) 1is stochastically e

larger than T = Z(X*) (see (2.1) and (2.2)). The NWUT case similarly follows.

Proof 2. Consider the record value process {Si,i > 1}, If X dis NBUE then
E(Sk—sk—llsl""’sk-l) < u, thus {Sn-nu,nlz 1} 1is a super-martingale. )
Consider the stopping time Nt+l” which is one plus the number of record [

values in [0,t]. Then: ]

(2.3) ESNt+1 < ME(N +1) = u(H(t)+1) . .

Define 6(t) = E(X—tIX> t) = uG(t)/F(t). Then ES = t+6(t) so (2.3) Xy
Nt+1 "‘:f

reduces to:
(2.4) t+6 (£) < u(H(t)+1) . e
Now: ' o

(2.5)

=

s (t) = Pr(N(t) < 1) = (H(t)+1)F(t)
while: \
(2.6) Fy(t) = Pr(T> 1) = tn Y (8) +G(e) = o lFCE) (46 ()] .

The result now follows from (2.4), (2.5) and (2.6). The NWUE is handled b

Q.I
analogously. hﬂ
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Lemma 2.2, If F 1is NBUE then p(X,H(X)) > o/u. If F 1is NWUE then

o (X,H(X)) > u/o.

Proof. Note that dFg (t) = H(t)dF(t) while dF (t) = ruldr(tr). By
R 2
Lemma 2.1:

(2.7) E82 = E(XH(X)) > ET = u2/u .
Now subtract u and divide by ¢ on both sides of (2.7) and the NBUE result
follows,

Next, assume that X dis NWUE. It follows from Lemma 2,1 that for any
increasing function £ (with the expectations existing):
(2.8) EQ(SZ) = Jl(x)H(x)dF(x) f_u-ljxl(x)dF(x) = EL(T)
choose 2(x) = H(x), then:

(2.9) EHZ(X) = 2 < WIEQRH(X)) .

From (2.9) the NWUE result easily follows.
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3. Applications. E
.'l
3.1. Monte-Carlo estimation of the renewal function. Suppose we wish to ,f:l“,
g
estimate M(t), the expected number of renewals in [O,t] for a renewal .
I3
process with interarrival distribution F, by Monte-Carlo simulation. An b
o
obvious approach is to simulate N(t), the number of renewals in [O,t], ",:
Ul
K times (Nl(t),...,NK(t)), and to estimate M(t) by the sample mean. ’;‘
*
In Brown, Solomon and Stephens (1971) an unbiased estimator M (t) was ot
W
proposed and it was shown that as t > » the asymptotic relative savings ",:’
0
1)
in risk between M*(t) and the estimator based on N(t) was given by ':\
Al l‘
: pZ(X,H(X)). Lemma (2.2) gives a lower bound on p and thus a lower bound ks
p 0
on the asymptotic relative savings in risk. 3:
) ¢
| \'
# 'g‘
! 3.2. Exponential approximation of DMRL distributions. Consider a continuous .
. DMRL (decreasing mean residual life) distribution F on [0,») with stationary ':';
a\ renewal distribution G. In Brown (1987) it is shown that: |::
: "'?
N
B
* * ")
. (3.2.1) D™ (F,G) = sup|F(B)-G(B)| < 1-EH(X ) R
1 ‘;‘&
: K
o
- * 2l
where H = -LnF, the cumulative hazard function, and X ~ G. Now:
&
A Ry
’ 3
(3.2.2) Ii:s2 = J(H(t)+l)—f(t)dt = u[1+EH(X®)] . é‘i
5 e
¥
l"
But F DMRL implies F NBUE, thus (3.2.2) and Lemma 2.1 give: '::
I :
. w
(3.2.3) E52 = p[14+EH(X )] > ET = u2/u
N
3
G
thus: e
2
'\.
i
‘i
Y

WY,

‘x , - , e N OO R ,.'(.. o, ‘
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(3.2.4) EH(X") > o%/u? .

From (3.2.1) and (3.2.4) we obtain:
*
(3.2.5) 0*(F,0) < 1-(o?n?) .
The inequality (3.2.5) thus extends the result of Brown (1987) from F
IFR to F DMRL. Moreover it follows from (3.2.5), employing the methodology
of Brown (1987) that for F IMRL:

(3.2.6) suprf(t)—e—t/“{ f_l-(czluz) .

Thus if F is DMRL with coefficient of variation close to 1, then

F 1is approximately exponential,

3.3. The second record value. Consider ‘32'81 the interarrival time between

the first and second record values in a record value process corresponding to
F (equivalently the interarrival time between the first and second events in
a non-homogeneous Poisson process with EN(t) = H(t) = ~LnF(t)). It follows

from Lemma 2.1 that F NBUE implies:

(3.3.1) E(S,-5)) >

A\
<}
3
[
=
]
1
=
]

while F NWUE leads to E(Sz-Sl) (oz/u).

| A

The quantity E(Sz-sl) is the expected residual life for an item which
is minimally repaired at its first failure, It is of interest in the evalua-

tion and planning of maintenance policies.
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Lemma 3.3.1, below, presents an upper bound of o for E(SZ—Sl), f
Ry
derived without aging assumptions of F. As is done throughout this paper Y
3
i we assume that F is a continuous distribution on [0,«). a
4 .
. ]
Lemma 3.3.1. Let X~ F and g a function on [0,*) with Egz(x) < o, s
'\l
: Then: Y
: :
i} {
[} X
- < !
5 [ECe(s)-a(s )] < o x
' \g
o V)
~ where cg is the standard deviation of g(X). In particular the choice \
)
B g(x) = x gives: b
y ’
K Y,
\
E(S,-S.,) < o© ot
; 2 "1 — b
o :
k) where 0 1is the standard deviation of X. )
z ¥
d
; Proof. Eg(S,) = E(g(X)H(X)) = Eg(X)EH(X) + 0,0y 4y (g(X),H(X)) < Eg(X)+o,. s
4 N
4 Thus E(g(Sz)-g(Sl)) :_Gg. Substituting -g for g yields E(g(Sl)-g(Sz)) < W
. X1
f cg from which the result follows. [I 2
! Al
: Corollary 3.3.1. For F NBUE, 02/u_i E(Sz—Sl).i o, For F NWUE, '
) \)
: M < E(S,-8;) < 0. 0
(U
X Proof. The NBUE case follows from expression (3.3.1) and Lemma 3.3.1. The )
P B— Xy
\
: NWUE case follows from Lemma 3.3.1 and the obvious NWUE inequality 4
: E(Sy-S;) >u. ] ]
a A function g(x) on [0,o) 1is defined to be starshaped if 5£§l is .%
\ 3
: increasing (meaning non-decreasing). If g 1is non-negative and starshaped &
: then g 18 increasing. R
M) A
: 3
"'
. %

‘. q l:
' - -n " oa R P P ~mn )
: ) P, h P BT gl o, o
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Consider, now, a function g which is non-negative and starshaped on ¢

[0,0), with ug = Eg(X) < =, Define:

ng(c) = g(t)dF(t)/uG .
Then: ng(t)/dFT(t) = u;lu(g(t)/t) which is increasing. Thus Fg is

larger than FT under the partial ordering of monotone likelihood ratio @

(Lehmann [1959] p. 73) and is thus stochastically larger. It follows that: “%J
(3.3.2) E{Xg(X)] > uguz/u . .
Now assume that F is NBUE. By Lemma 2.1 and (3.3.2): helt

-1 2 H

(3.3.3) Eg(S,) > Eg(T) = u "E(Xg(X)) > “g“z/“ . A

Thus for F NBUE and g non-negative and starshaped it follows from .

Lemma 3.3.1 and (3.3.3) that: v‘q

(3.3.4)

Q
NN

Mg = E(g(S,)-g(5,)) < oy

T
- ‘

4
50.'

2AAL

The choice g(x) = x leads to the NBUE inequality of Corollary 3.3.1.

o et A

3.4. Higher record values. Let Sk denote the kth record value in a record \

value process corresponding to F continuous. Since Sk is the kth event Ny

epoch in a non-homogeneous Poisson process with EN(t) = H(t) it follows that:

(

'
OO
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dFg (6) = 1)/ (1) 1aF(e)
k

and also that:

dFS (v) [H(t)/k—l)]dFS
k k-1

(), k> 2,

Consequently (from 3.4.2):

Eg(S)) = (k-1)'1E[g(sk_l)H(Sk_1)] .

Now H(S is gamma distributed with parameters k-1 and 1 (the

k-1’

sum of k-1 i.i.d. exponentials with parameter 1) thus ES = Var S = k-1.

k-1
(3.4.3) and the upper bound for

k-1

Using the mean and variance of H(Sk_l),

the product moment, EUV < EUEWO O with U =

vV Sg-1» V = H(

Sk—l) we obtain:

(3.4.4) Eg(S) = Eg(S,_1)+(0(g(8, _1))/Vk-1) .
From (3.4.4) we obtain the following generalization of Lemma (3.3.1):
(3.4.5) [E[(g (S )-8 (s, _ 1] < 0(g(s,_1 /T .

The case k=2 corresponds to Lemma 3.3.1. However the more general

inequality appears to be computationally useful only when k=2, For general

k o(g(Sk_l)) is no easier to compute than E(g(Sk)—g(S )).

k-1
We have no analogue of Lemma 2.1 for F NBUE or NWUE. However if we

strengthen the restriction on F from NBUE (NWUE) to IFRA (DFRA) then we
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obtain the following:

Lemma 3.4.2., Let F be a continuous IFRA distribution, and Tr be a random

variable with distribution dFy (t) = x" L 4F (%) /u th

r-1’
r

moment of F, Then Sr is stochastically larger than Tr and:

where um is the m

If F 1is a continuous DFRA distribution with finite (r--l)St moment then Sr
is stochastically smaller than T,. If in addition F has finite (k+r-1)5t

moment then the above inequality reverses.

s

Road®s

For r=2 the above inequalities hold under the weaker condition that F

SO

R

is NBUE or NWUE.

Proof. Note that dFS (t)/dFT (t) = [H(t)/t:]r-1 which 1s increasing as F
r r
is IFRA, Thus Sr is larger than T, under the monotone likelihood ratio

and is thus stochastically larger. Thus:

k k _
(3.4.6) ES > ET =w, /¥ ;-
Next:
Hk st k
(3.4.7) Z_dF > X 47,
k! - uk

Multiply both sides of (3.4.7) by Hr-l/(r-l)! and integrate obtaining:

(3.4.8) (

o )
. oY LV i ¢
. yhy .,D ¥ ¥ #0 X) ‘ WY ERLRLRLALTS, l'c,l‘!'.“t'"u‘.‘
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Thus ESl: ktr-1

i'uk( " ) and this inequality and (3.4.6) yield the IFRA result,
The DFRA case similarly follows. By Lemma 2.1, for F IFRA and r=2,

82 i: T2 = T which is sufficient by our above derivation for (3.4.6) and
(3.4.8) to follow (with r=2) . D

Note that the various inequalities derived above for record value

processes hold more generally for non-homogeneous Poisson processes.

3.5. A variance inequality. Consider an absolutely continuous distribution

F with failure rate function h(t) bounded above by A(h(t) < X for all t > 0).
Let S1 and 82 denote the first two record values in a record value process
corresponding to F. The failure rate function of SZ-Sl evaluated at t

is a mixture of the values {h(s),s > t} and is thus bounded above by A for

all t. Consequently:

-1
(3.5.1) E(S,-5,) > A7 .

By Lemma 3.3.1:.

(3.5.2) E(S,-5,) <0

where o 1s the standard deviation corresponding to F. From (3.5.1) and

(3.5.2) we obtain:

(3.5.3) o2 > 272

Thus among all distributions on [0,») with failure rate bounded above

by A, the exponential distribution with parameter A has smallest variance.

'.
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Next, consider a homogeneous Poisson process on [0,~) with intensity &

L2

et
A and event epochs {Ti’i.i 1}. Let N be a stopping time and consider the fﬁﬁf
A L5

* . AR

random variable TN’ letting h denote its failure rate function. Now: g&,
* e

(3.5.4) h (t) = APr(TN=t|Ti=t, for some 1) < A , :4Qﬁ
i

» i:é’

win

Thus (3.5.3) and (3.5.4) imply:

;:\:a;i

A

-9 vk

(3.5.5) Var(Ty) <A77 . ok
e

- AN '.‘

Note that A 2 is the variance of T1 as well as the variance of :ﬁgﬁ

3N

Ve
T , the time of the first event after time t. These event epochs have }i&%
N(t)+1 S
Py 4

smallest variance among all random event epochs for the Poisson process. Sin
v
The inequality (3.5.5) holds for a large variety of random variables ;:ﬁ
)
N
arising in secondary processes generated by a Poisson process. These include Nﬂk
<
WA
counter models, queues with Poisson input and uniformizable Markov chains, n
{ARY
Also note that if the failure rate of F 1is uniformly bounded above by :g&e
b
‘~ i
A, then by Lemma 3.3.1 and the argument used to derive (3.5.1): ?ﬁﬁ
Rl
-1 -1/2

k1/2)‘-—1

fv

Thus c(Sk) , the lower bound being achieved in the exponential case.
Thus for k > 1, the exponential distribution with parameter A minimizes
the variance of the kth record value, among all distributions with failure

rates uniformly bounded above by A. Equivalently, consider a non-homogeneous

B
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Poisson process with intensity function A(t) bounded above by A. Then Wt
Var Sk > kk-z where Sk is the kth arrival epoch. Thus among all non- oy
homogeneous Poisson processes with intensity functions uniformly bounded e
above by A, the homogeneous Poisson process with intensity A minimizes d

the variance of S for all k > 1. L
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